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ABSTRACT

We present techniques for feature recognition on small bodies using camera imagery, specifically
with the aim of matching acquired features against a pre-existing catalog of general landmarks.
This recognition capability is a necessary input to the navigation filter and is also of use in reac-
quiring areas of scientific interest for further examination or for sample return. We describe the
feature detection mechanism and the descriptors used to identify features as well as various tech-
niques to enhance invariance properties under imaging conditions likely to be encountered during
a small body mission. We also describe additional computer vision products of use to a small body
mission which fit within the feature detection framework.



1 Introduction

The image processing work in support of this R&TD task ultimately centers on generating the
landmark table (LMT) and auxiliary landmark table (LMTX) for each image of the target body
acquired by the spacecraft usinggeneral landmarks. We describe in detail (1) the identification
of candidate landmarks, (2) their image localization, which corresponds to the bearing angleszα

andzβ in LMT, and (3) the feature descriptorsdI recorded in LMTX and used to match candidate
features against their descriptorsdC in the feature catalog (FCAT). A superset of those features
identified as landmarks can be used in the paired feature table (PFT) and auxiliary paired feature
table (PFTX) for frame to frame motion estimation. Alternatively, simple feature tracking inde-
pendent of the general landmarks may be used. The latter is a thoroughly understood technique
which, depending on extent of motion, can be performed at video framerate (30Hz) or faster. In
the following, we focus exclusively on the general landmarks used to populate LMT and LMTX.

Past work on landmark identification and matching has focused on geometric primitives in
image data, which can be reliably parameterized by a simple model. In particular, the Machine
Vision Group has done extensive work on identification and matching of craters[1], which appear
as ellipses in imagery. Information on sun angle and shadingphenomena is used to make the
resulting product largely insensitive to lighting conditions. While this crater detection work has
been very successful, it’s applicability is limited to bodies with well-defined (i.e. uneroded) craters.
In cases where craters are more jagged or where no craters arepresent, it cannot be used. Since the
likely target of future small body missions will include such objects, some attempt must be made
to address this deficiency. Possibilities include wideningthe set of geometric primitives or using
differential (curvature, locations of cusps, etc) and topological information on curves and curve
intersection.

However, it is still possible that an unexplored small body will fit none of the requirements for a
specific model-based landmark. It then becomes essential todevelop a type ofgeneral landmark
that is model-free and depends only on local image information. The algorithm we describe below
is based on the notion of selecting features automatically at some optimal scale and is adapted
from David Lowe’s[2] scale invariant feature tracking (SIFT) algorithm. In a broad sense, this is
a generalization of Harris corner features[3]. We find points of interest in scale space[4], a stack
of band-pass filtered copies of an image, and record orientedgradient information in the scale
neighborhood of a selected feature. The interest point becomes a candidate landmark, and the
gradient information becomes the basis for a recognizable descriptor.

The descriptor,dI in LMTX, is compared to FCAT. If a matchingdC is found, then the land-
mark is considered identified. If not, the new landmark may beused to update FCAT. In general,
FCAT should satisfy the following requirements.

1. It must be dynamically updated to admit newly identified landmarks.

2. It must be efficiently organized for easy search.

3. It must be insensitive to changes in viewpoint, scale and illumination.

The update mechanism and efficient organization of the catalog will be topics of future work,
and we assume in the following that a catalog has already beenpopulated. Much of our focus for
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the current year has been on algorithm development addressing the item 3 above. Model-based
approaches are inherently viewpoint and scale invariant, subject to the geometry of the primitives
used. In the case of craters, the projective invariants of conic sections are well understood, and
the explicit modeling of lighting angle affords a degree of illumination invariance. In the case
of general landmarks, scale invariance is built into the descriptor selection mechanism, as is a
certain amount of viewpoint invariance. We will describe indetail efforts to address viewpoint and
illumination invariance.

Using image data, we are able to supply information beyond identification of landmarks in the
catalog. Given knowledge of 3D locations of landmarks, we can also extract from a single frame
(subject to image and map noise) the 6 DOF position and attitude of the camera with respect to
the body. While this information may be of use as a sanity check for the state estimator, it is
immediately relevant from a vision standpoint as a means of using geometric rigidity to remove
false matches between LMT and FCAT. If 3D landmark locationsare unknown, we can use two or
more frames to recover 3D structure and relative camera motion between frames up to an unknown
scale. Extensive work has been done in computer vision in these areas.

We now describe general landmarks in some detail.

2 General Landmarks

General landmarks are image features that can be identified across changes in viewpoint, distance
to object and illumination conditions. In our case, they arenot model based but are derived purely
from image data. The specific type of landmarks we consider are based on David Lowe’s SIFT
features. Since the natural setting for these features is scale space, we begin with a brief overview
of the topic.

2.1 Scale Space

We omit much of the underlying theory of scale space and describe only some relevant aspects.
Details can be found in [4, 5]. Our goal is to find image features reliably across a variety of image
scales, corresponding to different distances between the camera and object. Associated with any
feature in a given image is some inherent scale. In order to compare to the same feature in another
image with a different inherent scale, it is necessary to place both in the proper framework. Thus,
if I(x, y) is the gray value of an image at point(x, y), we consider

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) =

∫ ∫

G(x − ξ, y − ζ, σ)I(x, y)dξdζ

the convolution of the image with a Gaussian kernelG(x, y, σ) given by

G(x, y, σ) =
1

2πσ2
exp(−

x2 + y2

2σ2
)

Given the same feature in imagesI1 and I2 at locationsp1 = (x1, y1) and p2 = (x2, y2),
respectively, we expect that there existσ1 andσ2 such that local image properties ofL1(x1, y1, s1)
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are similar to those ofL2(x2, y2, σ2) in appropriately sized neighborhoods centered onp1 andp2.
Intuitively, this means that modulo orientation and rescaling, the same feature in two images differs
only by a Gaussian blur dependent on relative scale.

While L(x, y, σ) is used to construct the descriptor for a feature, its image location is actually
identified in a different space. Let

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ)

for some fixed choice ofk. This is clearly equivalent to convolution ofI(x, y) by a Difference of
Gaussians (DoG). Features correspond to extrema in this 3 dimensional spaceD(x, y, σ). There
are several ways to interpret this choice. The collection ofD(x, y, σ) for all σ can be considered
a collection of bandpass filtered copies of the image, wherek controls the size of the pass band.
If a feature (defined as an extremal value inD at some spatial frequency) is identified in one
image, the corresponding point viewed at a different scale in a different image should also exhibit
an extremum at its optimal spatial frequency. An explicit search inD will find all points which
exhibit this behavior.

Alternatively, it can be shown that the DoG approximates thescale normalized Laplacian of
Gaussian (nLoG)σ2∇G ask → 1. This terms approaches the derivative ofG with respect toσ.
The explicit connection between∂G

∂σ
to the nLoG is made via a partial differential equation similar

to the heat diffusion equation, but parametrized byσ rather than time. Details can be found in [2].
The extrema of the nLoG has been shown empirically to be a stable class of scale invariant image
feature[6] under various geometric transformation. The approximationD to the nLoG as used by
Lowe has the advantage of simplifying some of the later computations.

2.2 Summary of algorithm

As mentioned above, our features correspond to extrema of the discretized DoG spaceD(x, y, σ)
with separation defined byk. Once a feature is identified, we sample gradient data on an oriented
patch in the corresponding slice ofL(x, y, σ) (i.e. with the sameσ as the detected feature) of scale
space centered on the feature. This forms the basis for the feature’s scale invariant descriptor.

2.2.1 Details of Feature Detection

We base our implementation on the algorithm overview in Lowe’s paper[2] and refer the reader to
that paper for more detail. We also describe our own task specific modifications to the algorithm.

Images scalesL(x, y, σ) are computed for

σ = knσ0

wheres0 represents an initial smoothing of the image,k is the fixed constant described above, and
n ranges over integers from 0 to some maximum. For computational efficiency, both in creation
of the scales and in eventual determination of the feature descriptors, the scale space is organized
into octaves. Within each octave are a fixed number, sayf , of steps with the combination off and
k chosen so thatk = 21/f . This implies that from one octave to the next, the change in scale is

kf = (21/f )f = 2
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Figure 1:Diagrammatic representation of scale spaceL and DoG spaceD. Successive octaves are formed
in L by resampling. Features are detected inD and their descriptors are formed from the corresponding
scale slice inL.

However, a scale change fromσ to 2σ can be approximated by a factor of 2 smooth resampling
of L(x, y, σ). Thus,L(x, y, 2σ) is constructed with spatial dimensions half the size ofL(x, y, σ).
This has the advantage of (1) requiring explicit computation of Gaussian convolutions for only
the first scale, and (2) reducing the size of the scale space, since each octave requires a fourth
the storage of the preceding octave. This pyramidal structure for the scale space has a natural
simplifying implication for the construction of the feature descriptor. Since succeeding octaves are
smaller, the feature patch used to compute a descriptor can be kept a fixed size throughout while
still covering relevant image data. In effect, the descriptor window (always a fixed size) of a feature
viewed from close will have the same information content as the window of a feature viewed from
far, since the close object will be resized to something approaching the distant object for some
appropriate scale.

Once the scale space is computed, we computeD(x, y, σ) by differencing adjacent steps of the
scale space. These ideas are illustrated in graphical form in Fig. 1, which is adapted from [2]. The
only problem occurs at boundaries of octaves, where the sizes of the first step of a given octave
and the last step of the preceding octave do not match. We solve this simply by resampling the
larger of the two steps. We show an example of bothL(x, y, σ) andD(x, y, σ) for an image of the
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Figure 2: Visualization of scale space (top row) and DoG space (bottomrow) for an image of the Eros
asteroid. The largest images across each row represent the first octave, the next largest the second, and the
smallest the third. In any given octave, each step from left to right adds a factor ofk Gaussian blur in the
scale space or a factor ofk shift in pass band for the DoG space.

asteroid Eros in Fig. 2. We use only 3 steps in each of 3 octavesfor easier visualization In our
construction above, there are 3 parameters that define the scale space and DoG space. These are
the initial smoothing(σ0), the number of octaves, and the number of steps per octave(f). Observe
that the choice off defines the scale separation byk = 21/f .

Having computed the discrete difference of Gaussian spaceD(x, y, σ), we perform an explicit
search for extrema by examining for each coordinate(x, y, σ) its 26 neighbors. Again, there is
a slight complication at octave boundaries because of mismatch in image size. This is solved
either by resampling the image up or down by a factor of 2, as the circumstance dictates. Once a
preliminary list of extrema is found, a series of tests must be performed to eliminate those that are
poor candidates for feature matching.

Suppose an extremum of the DoG functionD is found at(a, b, γ). The following tests are
employed:

• We threshold on the absolute value ofD at (a, b, γ). This tends to eliminate the largest
number of unstable features. Our current implementation accepts only values above some
user-defined fraction of the median of values ofD at all extrema.

• We also suppress features in areas of low image variance. This is done be computing pix-
elwise image statistics at each scale and masking out regions of low variance. We must,
therefore, examine the image statistics atD(a, b, γ) before accepting a point as a valid fea-
ture.

• Since the LoG, hence DoG, has a strong response to all edges, we need to eliminate “edge-
like” features in favor of “corner-like” features, since the former is poorly localized. This
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is in rough analogy to the Harris corner detector. The eigenvalues of the 2D Hessian matrix
H(x, y)|(x,y)=(a,b) at(x, y, γ) are the principle curvatures of the surface defined byD(x, y, γ)
at (a, b, γ). If one principal curvatures differ greatly in magnitude from the other, then the
candidate point likely belongs to an edge and is a poor choicefor a feature. A trick employed
by Lowe and borrowed from Harris is to compare the ratio of tr(H)2, the square of the trace,
to det(H), the determinant. If the eigenvalues ofH aree1 ande2 with e1 = re2, then

tr(H)2

det H
=

(e1 + e2)
2

e1e2
=

(re2 + e2)
2

re2
2

=
(r + 1)2

r2

The left hand side achieves a minimum whenr = 1 and increases monotonically withr.
Hence, there is no need to compute eigenvalues explicitly. We need only threshold on the
ratio on the left.

Finally, we fit each extremal point(a, b, γ) of D to a quadraticQ in (x, y, σ) such that.

Q = min
Q̃∈P2(x,y,σ)

a+1
∑

x=a−1

b+1
∑

y=b−1

kγ
∑

σ= 1

k
γ

|Q̃(x, y, σ) − D(a, b, γ)|

whereP2(x, y, σ) is the space of2nd degree polynomials in(x, y, σ). If Q achieves an extremum
at (xo, yo, σo), we apply the following criteria.

• If (xo, yo) differs by more than one pixel from(a, b) or γ differs by more than one step from
σo, the candidate is rejected.

• If (xo, yo) differs by less than one pixel but more than one-half pixel from (a, b) or γ differs
by less than one step but more than one-half step fromσo, we move the candidate in the
appropriate spatial and scale directions and refit the polynomial.

• If (xo, yo) is within one-half pixel of(a, b) andσo within one-half scale ofγ, we accept
(xo, yo, σo) as the subpixel location of the feature. Finally, given the camera model, these
pixel coordinates can be transformed into 3D coordinates onthe CCD of the camera. From
this, the bearing angleszα andzβ reported in LMT (or PFT) can be obtained.σα andσβ in
LMT will be derived from combination of known sensor noise and the quality of the subpixel
fit (i.e. the residual in fittingQ to the data.)

2.2.2 Feature Descriptor

Once a feature is detected in the DoG space, we must develop a descriptor for it that can be
recognized under changes in viewing condition and scale. The descriptor appears in LMTX and
PFTX asdi for framei. A description of the procedure follows.

The feature descriptor is based on local gradient information at optimal scale. Since we seek a
viewpoint independent solution, the first step is to eliminate dependence on image orientation. This
is accomplished by computing a principal orientation around each feature point in the DoG space
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and reorienting the feature according to this information.If the feature is found at(a, b, γ), we poll
the 2 dimensional gradient ofD(x, y, γ) near (a,b). LetM(x, y) be the magnitude andO(x, y) the
orientation of∇x,yD. We construct an orientation histogram ofN bins, each occupying360/N
degrees in the image plane as follows. IfO(x, y) is q degrees, then we roundq/N and add to the
corresponding bin in the orientation histogram the value

M(x, y) exp(−
(x − a)2 + (y − b)2

λ2
)

for someλ. This is the magnitude of the gradient at(x, y) attenuated by a Gaussian centered at
(a, b). The choice ofλ determines the radius around(a, b) used to poll for the histogram. We
typically use a radius of3 ∗ λ and setN = 36, λ = 3. The mode of the histogram then indicates
the local orientation of the feature. If the histogram is bimodal with a second mode at least 80% as
large as the primary mode, then we record both orientations and construct two features at the same
coordinate, one with each local orientation.

Given the orientation above, we rotate the region around thefeature using bilinear interpolation
to a canonical orientation of0. The result is complete rotation invariance in the image plane, up
to the orientation resolutionN . The size of the neighborhood rotated is dependent on the size of
vector we use for the feature descriptor. We now describe this.

Since all features orientation can be rotated to0, it suffices to construct a descriptor based on
a grid aligned with the (locally re-oriented) image axes. Thus, assume without loss of generality
that the orientation of a feature at(a, b, γ) in the DoG space is0. We partitionD(x, y, γ) in a
neighborhood of(a, b) with radiusR into aK ×K grid. In each grid cell, we compute a histogram
of local orientations usingL bins per cell. This is done essentially as above for the principal
feature orientation, except that we do not attenuate the gradient magnitudes by a Gaussian. The
L × K × K list of histogram values taken in some predefined order is then the feature descriptor.
Typical values used areR = 8, L = 8, K = 4, for a 128 dimensional vector representing each
feature, using information from a 16 pixel x 16 pixel region centered at(a, b) in D(a, b, γ). Data
a distance greater thanR from (a, b) is ignored, producing a circular mask on the descriptor. See
Fig. 3 for a graphical representation, borrowed from Lowe, of this descriptor using the typical
parameters indicated above. This scheme affords a certain degree of shift invariance. Observe
that if the location of the feature shifts by a small amount inany direction, there is relatively little
change in the histogram of any cell in the grid, since the majority of pixels contained in it remain
unaffected. Thus, small shifts due to viewpoint change can be easily accommodated.

Once the descriptor is computed and entered into LMTX, we compare to the list of feature
descriptors in FCAT. At the moment, we use a simple thresholdon Euclidean distance between
128 dimensional vectors as well as some geometric constraints described below. We will eventually
use more sophisticated data structures to organize FCAT foreasy search. The PCA version of the
algorithm (described below) places an inherent organizational structure on the catalog, as we will
see.
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Figure 3:On the left is a graphical representation of feature vector.The length of each arrow corresponds
to the weight of a given orientation in each of the 4x4 grid cells. These concatenated lengths represent the
feature descriptor. On the right is an actual descriptor in graphical form from a feature on the Eros image in
Fig. 2

2.2.3 Invariance Properties and Limitations

By construction , the descriptors are invariant to Euclidean motions of the image plane, at least up
to discretization. In other words, any combination of rotation and translation of the image plane is
acceptable. The use of the scale space formalism adds scale invariance. Thus, any transformation
of the form





cos(θ) sin(θ) tx
− sin(θ) cos(θ) ty

0 0 1





applied to homogeneous image coordinates(x, y, 1)T can be accommodated. For the small body
task at hand, there is a potentially wider range of image transformations. For successive frames
during orbit, the above is often a good approximation. However, as viewpoints change dramatically
(possibly over multiple orbits), the transformation of theimage plane is poorly approximated by
the scaled 2D rigid motion above. In Fig. 4, we show matching results for adjacent frames and
for frames differing by one full orbit of the NEAR spacecraftaround Eros. In both cases, there
is relatively little out of plane rotation. Thus, features are successfully matched. In Fig. 5, we
illustrate scale invariance using imagery of the asteroid Mathilde taken by the NEAR spacecraft
during approach.

Another key issue is illumination invariance. In the examples shown in Fig. 4, illumination
conditions have changed somewhat in the image pair on the right. However, much larger variation
can be expected in general. In particular, imagery of objects in space tends to exhibit both high
contrast and dramatic contrast change as a function of change in illumination direction. The algo-
rithm as it stands is largely incapable of handling such variations in illumination. Even the imagery
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Figure 4:Feature matches across adjacent frames and after one full orbit of NEAR spacecraft around Eros.

in Fig. 5 presented problems for the base algorithm.
One solution to both the viewpoint and illumination problems is to develop FCAT so that it

includes landmarks from the same area on the target viewed atmultiple illumination conditions
and from several directions and save all descriptors. Thus the descriptors in LMTX will match
landmarks from at least some iteration of the process. This may be possible in some mission
scenarios and impractical in other. For the latter case, we must still try to improve viewpoint and
illumination invariance for features. We describe our attempts thus far below.

2.3 Addressing Viewpoint and Illumination Invariance

We describe techniques to address the problems of out of plane rotation and illumination change.
In a general setting, only image based information would be known, and we explore this first.
However, if some state information is also known, more can potentially be done.

2.3.1 Image based solutions

We describe techniques to address the problems of out of plane rotation and illumination change.
In a general setting, only image based information would be known, and we explore this first.
However, if some state information is also known, more can potentially be done.

The base algorithm is not designed to handle large changes inviewpoint given objects with
highly 3 dimensional (i.e. nonplanar) structure in the scene. So we focus only on illumination in-
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Figure 5:Scale invariance is demonstrated by imagery of the Mathildeby the NEAR spacecraft. The same
image is used on the top half of each frame. The bottom half is an image of Mathilde at roughly double
(left) and half (right) this size.
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Figure 6: . Features for an image of Eros without preprocessing, with block average background sub-
traction, and with bilateral background subtraction. The intensity normalization of the two preprocessing
techniques often results in greater illumination invariance.

variance using image based solutions. To a certain extent, the use of the DoG space with inherent
frequency bandpasses limits the dependence of the data on lighting. Lowe makes a further ex-
plicit attempt to eliminate illumination dependence by truncating the orientation histograms used
to build the feature descriptor. A maximum is assigned for all bins, and any bin that exceeds the
maximum is set to the maximum value. This is helpful in cases where saturation leads to very high
gradient values. However, it has little effect on more subtle but equally destructive variations in
illumination, particularly with the high contrast imagerywe are using. We have had some success
with preprocessing the image by background subtraction. This amounts to subtracting from each
pixel the average gray value of a large (in our case31 × 31) block centered on the pixel. IfI(x, y)
is the image, we replace withJ(x, y) given by

J(x, y) = I(x, y) − I(x, y) ∗ F (x, y)

whereF is ann × n matrix with F (i, j) = 1
n2 . In some cases, we have had greater success with

bilateral background subtraction, in which a bilateral filter is used in place of a block average. If
Bf(I) is the filtered image, we use

J(x, y) = I(x, y) − Bf(I)(x, y)

to compute the scale space. The later (see [7] for details) isan edge preserving smoother which
does a better job of maintaining useful texture informationnear crater rims and other sharply
defined structures. We omit details and refer the reader to the paper cited above. The frames
in Fig. 5 were processed using bilateral background subtraction, since the raw imagery failed
to produce many matches. Either technique effectively precedes the construction of the scale
space and DoG with a highpass filter of the image. In Fig. 6, we show the results of both block
average and bilateral background subtraction on an image ofEros, as well as the features detected
with each subtraction method and on the raw image. Observe inthis case that while the bilateral
result reduces the overall number of features, they are typically more salient than those detected
otherwise.
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Figure 7:. a) Diagram showing use of sun angle for background subtraction. b) Image of real crater from
Eros. c) Result of bilateral background subtraction. d) Result of bilateral background subtraction using sun
angle and thin rectangular window. Observe that more of the crater interior is usable in frame d)

2.3.2 Using State Information

FCAT is intended to contain information on sun angle (s), approximate viewing direction (v) and
approximate viewing distance (vd). A simple but useful piece of information is the sun angle in
the image. If this is known, we can try to compensate for shadow effects in illumination direction.
Rather than the usual block average or bilateral backgroundsubtraction, we use a thin filter window
oriented perpendicular to the sun direction. A simple technique is to rotate the image until the
sun angle is vertical and then to perform background subtraction using a thin rectangle aligned
horizontally. This averages over regions of highlight or darkness due to the interplay between 3D
structure and lighting, while minimizing any averaging over regions of sharp lighting variation.
We illustrate the idea in Fig. 7 and show results for bilateral background subtraction both with and
without knowledge of sun angle. Invariance to illuminationis one of two major challenges. The
other is invariance to viewpoint change. While the base algorithm is quite insensitive to rotations
and shifts in the image plane, perspective distortion resulting from camera motion in 3D is much
harder to accommodate. We have attempted to introduce a degree of affine invariance as follows. If
we know approximately the center of gravityG of a roughly spherical body, the viewing direction
V of the camera, and the positionC of the camera in some inertial reference frame, we can attempt
to compensate for foreshortening effects. This is accomplished by compressing the image in a
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Figure 8: Proposed technique for reducing foreshortening effects prior to calculating feature descriptor.
The image is stretched by a factor ofcos(θ) in the direction corresponding to the projection of G-C ontothe
image plane

direction corresponding to the projection ofG − C, the vector from the camera to the center of
gravity of the body, onto the image plane by an amount depending on the cosine of the angle
between theG − C andV . This is illustrated in Fig. 8 by a 2D sketch. The approach becomes a
more realistic approximation to the true perspective distortion only as the curvature of the surface
approaches zero, in other words when the surface can be locally approximated by a plane and
G − C approaches the surface normal. This assumption may be applicable even to small bodies
during close orbit or descent. However, our tests with imagery of Eros were unsuccessful. We
suspect that the irregularity of the surface and the relatively high orbits used in our test imagery
played a factor. This topic is explored further in Sect. 2.3.3.

Finally, we use multi-frame cues to increase the likelihoodof matches between images taken
at different viewpoints. If two features can be connected through a chain of images, they can be
matched even if their individual (i.e. single frame based) descriptors fail to match directly. This
is a simple case of a planned dynamic update scheme for the FCAT, in which the descriptor of a
feature is modified in some weighted average fashion as it is reacquired in successive frames.

We show the result of using both sun angle information for oriented background subtraction
and multi-frame cues in Fig.??. Observe that while single frame-to-frame matches begin tofail
quickly, the use of sun angle and multiple frames allows matches across much greater changes in
viewpoint and lighting. This is a good indication that a dynamic update of descriptors in the feature
catalog will increase match likelihood. Note that while we only display matches for every fourth
frame in Fig.??, we use information from intervening frames in the computation.

2.3.3 3D reconstruction and Epipolar constraint

Surface irregularity is relevant for two reasons. First, wecan use it to judge the applicability of the
foreshortening compensation described above. More fundamentally, we can use it as a measure
of the quality of a landmark. This is applicable not only to constructing LMT and LMTX but to
populating FCAT. A feature in an area of high 3D structure is unlikely to be a stable landmark
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Figure 9:We show matches for a short sequence of Eros images in which viewpoint and lighting conditions
change over time. In the top row, the base algorithm is used without information on sun angle and without
multi-frame cues. In the bottom row, we use both the sun angleand multi-frame cues. Observe that in the
last frame (right), the base algorithm fails entirely whilethe modified algorithm matches several features.
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under either viewpoint or illumination change. Fortunately, we are able to compute 3D structure
up to scale from two adjacent views. Use use the matches foundin PFT to start the process.

Given two adjacent or nearby frames and a series of feature matches supplied by the PFT,
we show how to reconstruct the surface and determine whethera region is a good candidate for
landmark placement. As part of the process, we will describein brief the epipolar camera geometry
and its implications for matching features either in the PFTor between FCAT and LMT.

Given a set of point correspondences (such as that supplied by PFT) between two frames, there
is a constraint on the 3D location of the imaged points and their image coordinates. For any point
P in 3D, consider the planeP l formed by that point and the projection center of the camera in
the two positions at which the two frames were taken, say at timest1 andt2. It can be shown that
the imaged point in either frame lies on the intersection ofP l with the CCD at the time of image
capture. Letp1 andp2 be the 3D coordinates of the projected point on the CCD at times t1 andt2
in the coordinate frame of the camera. We can compute these points from image coordinates using
the camera model. Borrowing terminology from projective geometry, this is known as the epipolar
constraint. SupposeP is expressed in the camera frame at timet1. In the absence of noise, there
exists a3times3 matrixE, called the essential matrix, such that

pT
1 Ep2 = 0

E is given byE = RT[×]. This constraint captures the epipolar geometry in its entirety. Here
(R, T ) is the Euclidean motion undergone by the camera frame between timet1 andt2, andT[×] is
the skew symmetric matrix associated with cross product byT (i.e. for a vectorv, T[×]v = T × v).
Given a set of point correspondences, the relation above yields a (generally overdetermined) linear
system in the entries ofE, which we can solve by various means such as singular value decom-
position. OnceE is known, it can be decomposed intoR andT̄ = κT , whereT̄ has unit norm.
Without an additional constraint on scale,κ cannot be determined. This is clear from the epipolar
constraint, since any rescaling ofT , henceE, has no effect. We omit the details of this procedure
and refer the reader to [8]. Once the linear estimate of the motion is obtained, we typically refine
it with a non-linear optimization that minimizes the reprojection error to simultaneously solve for
motion and 3D structure.

The above computation not only gives us 3D reconstruction, it provides a quick way to check
for false matches between the descriptors in LMTX and FCAT. False matches arise from similar
descriptors for two features. However, the 3D location of those features and their projections are
generally inconsistent with the epipolar geometry. Thus, we computeE using subsets of the full
dataset and a robust technique such as RANSAC [9]. We then check the value ofp1Ep2 for each
candidate match in either the PFT or between the LMT and FCAT to identify outliers.

Once the relative motion is known, we can reconstruct the scene geometry using stereo vision
techniques (see [8] for details). With this data, we can do local plane fitting to determine surface
normals and correct foreshortening. We can also get a good sense of the roughness of a region
independent of absolute scale by computing the local variance in stereo range values. In Fig. 10
we show a synthetic, texture mapped scene, the resulting range map from applying the procedure
outlined above, and a roughness map computed aslog of the range variance in a3 × 3 window
centered on each pixel. Note that areas with high 3D relief are clearly visible and can be avoided
for both entry into the LMT and populating the FCAT.
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Figure 10:A synthetic scene, the range map computed from PFT and techniques described in Sect. 2.3.3,
and a roughness map computed from the range. The roughness can be used to guide the selection of good
landmarks for viewpoint and illumination invariance.

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a technique for extracting the most relevant subspace
for data distributed in a high dimensional vector space, such as our feature descriptors. In brief,
we compute the eigendecomposition of the cross covariance matrix of the dataset and project the
data onto a basis consisting of the eigenvectors. Then the most relevant directions correspond
to the largest eigenvalues, and we can truncate the vector representation of the data in the new
basis without losing important information. Given an n dimensional dataset and the normalized
eigenvectors, saye1, e2, ..., em, corresponding to the largestm eigenvalues, we can project any
vectorv ∈ Rn into its most significantm components byv′ = Pv, wherev′ ∈ Rm and

P =











. . . e1 . . .

. . . e2 . . .
...

...
...

. . . em . . .











Following some recent work in the literature [10], we are testing a PCA version of the feature
algorithm. Unlike the algorithm described above, the PCA algorithm has two phases. The first is a
computationally intensive training phase needed to determine the projection matrixP . We expect
that this can be done offline on data collected by the spacecraft and sent to Earth. The second is
actual feature detection and matching. We first describe thetraining phase

We first collect information on a large set of features, possibly over several orbits of the body.
The base algorithm proceeds as described above up to determination of a principle orientation for
each feature. We then rotate a largek × k neighborhood of the detected feature in the correct
scale slice of the DoG space to set the principle orientationto zero, again as above. Typically,
the neighborhood is greater in size than30 × 30. Now we simply poll the gradient orientations
and magnitudes in thisk × k window and concatenate them into a vector of dimensionn = 2k2

for each feature. This is the dataset on which we perform PCA.Observe that even for a30 × 30
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Figure 11:Plot of 100 largest eigenvalues using 31 x 31 (1922 dimensional training features) window for
PCA algorithm.

window, the associated covariance matrix for which we need to do eigenvalue decomposition has
dimensions1800x1800. Since our only concern is some subset of the largest eigenvalues, we can
use numerical techniques that avoid the full eigendecomposition. Our current implementation uses
the Matlab version of the Implicitly Restarted Arnoldi Method. We tested this method on an Eros
dataset. In Fig. 11 we show a plot the 100 largest eigenvaluesusing a31 × 31 window (i.e.
n = 1922 in the notation above) Observe that the rapid decrease givessome evidence that as few
as 30 principal components are necessary.

After the projection matrix is computed from the training set, subsequent computation of fea-
tures descriptors is straightforward. We construct for each feature then = 2k2 original descriptor
as described and use the matrixP computed during training to project it into a much smaller sub-
space. In Fig. 12 we show matching results using the first 10, 30 and 50 principal components
as well as the result of the base algorithm without PCA. Note that for the 30 and 50 dimensional
cases, performance is nearly identical to the non-PCA algorithm, and actually show more valid
matches. The 10 dimensional case has many more outliers, buteven here, the majority of matches
are correct, and most outliers will be removed after applying the geometric constraints described
in Sect. 2.3.3.

PCA has a number of advantages. It is a sparse representationof the most relevant data com-
ponents. This means not only less storage and a smaller FCAT but potentially less sensitivity to
image noise. Furthermore, since the data is naturally organized in terms of relevance (i.e. the nth
element of the feature descriptor corresponds to data projection onto the eigenvector of nth largest
eigenvalue), it follows that matching can be done much more efficiently. Instead of a simple Eu-
clidean match, we can use a lexicographic approach that rejects incorrect matches after comparison
of just the first few elements of the descriptor. However, performance will depend heavily on the
training set and how representative it is for subsequent imagery to be used for the LMT. If there is
significant bias in the training phase, performance may be poor.

We are also exploring the use of Independent Component Analysis (ICA), a technique in which
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Figure 12:Matching results using a) the standard non-PCA algorithm, b) PCA with 50 dimensions, c) PCA
with 30 dimensions, d) PCA with 10 dimensions.
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the basis decomposition of the original vector space is not orthonormal, but aligned more naturally
to the most relevant directions of information content. Ourevaluation of this technique is still in
the earliest stages.

3 Additional Vision Based Products

We describe in brief, some of the additional vision capabilities that can be applied to small body
navigation. We start with the assumption that feature points are matched between overlapping
frames or that landmarks have been identified in the catalog.

We have already described some of the 3D reconstruction techniques available to us. Generally
speaking, scene reconstruction from two or more images withunknown camera motion is referred
to in computer vision as the Structure from Motion (SfM) problem. There are many variants to the
E matrix technique already described, including multi-frame techniques using a tensor constraint
on image coordinates of matched points. In general, more robust techniques incorporate a non-
linear optimization over the parameters of the relative camera motion, and possibly over the scene
structure. We cite one survey paper [11] covering some classical techniques.

If the 3D coordinates of data points are also known in some fixed frame, localization of the
camera in that frame can be accomplished very accurately. Inour case, the 3D information is
contained in FCAT and the image information in LMT. Givenn 3D-2D point correspondences, the
problem of localizing the camera in the world coordinate frame is known in computer vision as the
N-Point Pose problem. There is an extensive body of literature on this subject as well. We refer
the reader to [12] for an overview and numerous references. In Fig. 13, we show the localization
error for position estimation using synthetic data of10 points acquired by a90 degree field of view
camera500m above a surface. We assumeσ = 0.5 pixel error in image feature localization and
error in map knowledge varying fromσ = 0 to σ = 10 meters. Recovered position error for
the camera is reported as absolute error in the body frame. Ifq0 is the true attitude andqr is the
recovered attitude, then the angle associated withqerror = q−1

r q0 is reported as the attitude error.
We ran this simulation over 100 trials using the noise levelsindicated and report the RMS errors
in Fig. 13. The absolute position estimate (using FCAT and LMT) and relative motion estimate
(using PFT) can be used as a sanity check for the state estimator.

4 Conclusion and Future Work

Our adaptation of David Lowe’s SIFT work has shown some initial promise. We have produced
good matching results in relatively easy cases. Our attempts at enhancing the algorithm to handle
greater variation in viewpoint and lighting have met with some initial success, but more work is
required. At present, we are focusing on PCA and ICA methods and anticipate that these may
have better invariance properties in the small body setting. While the SIFT-like signature approach
is worth further study, we also intend to explore other avenues. These include an extension of
the SIFT framework to 3D structures. Since we have SfM techniques in place, we may be able
to examine local 3D structure directly and develop feature descriptors based on both intensity
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Figure 13:Position and attitude error vs. errors in 3D map knowledge offeatures for simulated camera
500 meters from surface. s is the standard deviation of Gaussian noise added to each coordinate.

information and structure. We also intend to explore the frequency domain more directly than the
scale space formalism accomplishes to see if signatures canbe computed directly in this arena.
Another potentially productive area is the use of image transformation other than bandpass which
capture local scene structure. We have started experimenting with scaled entropy images as a first
step.
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